TOWARDS TRUST MANAGEMENT SYSTEM FOR RESOURCE SCHEDULING IN CLOUD COMPUTING

M. Kaladevi
PG Scholar
Dept. of Computer Science and Engineering
P.S.R. Rengasamy College of Engineering for Women, Sivakasi-626 140

P. Thiruselvan
Assistant Professor
Dept of Computer Science and Engineering
P.S.R. Rengasamy College of Engineering for Women, Sivakasi-626 140

ABSTRACT

The allocation of cloud virtual machines at physical resources is a key requirement for the success of clouds. A trustworthy person is someone in whom you can place your trust and rest assured that the trust shall not be betrayed. A variety of different types of computing concepts that involves a large number of computers that are connected through a real-time communication network. Cloud schedulers do not consider the entire cloud infrastructure neither do they consider the overall user and infrastructure properties. Virtual resources are hosted using physical resources that match their requirements without getting users involved with understanding the details of the cloud infrastructure. The provided prototype implements the proposed cloud scheduler. The trustworthy scheduler component, it is important to have an understanding of how clouds are managed. The scheduler with trustworthy input about the trust status of the cloud infrastructure and it establishes the foundations of planned future work to cover other properties. Cloud trust management which provides the scheduler with input about the trust status of the cloud infrastructure.

General Terms
Cloudsim, Datacenter, Datacenter Broker, Virtual Machine, Cloudlet

Keywords
Chain of Trust, Scheduling, Trust Management, Resource Allocation, Trusted Computing

1. INTRODUCTION

Cloud computing is a large-scale distributed computing paradigm that is driven by economies of scale, in which a pool of abstracted, virtualized, dynamically scalable, managed computing power, storage, platforms, and services are delivered on demand to external customers over the Internet. Features of Clouds Scalable, Enhanced quality of service, specialized and Customized, Cost Effective, Simplified user interface.

CloudSim goal is to provide a generalized and extensible simulation framework that enables modeling, simulation, and experimentation of emerging Cloud computing infrastructures and application services, allowing its users to focus on specific system design issues that they want to investigate, without getting concerned about the low level details related to Cloud-based infrastructures and services.

At the provider side, simulation environments allow evaluation of different kinds of resource leasing scenarios under varying load and pricing distributions. Such studies could aid the providers in optimizing the resource access cost with focus on improving profits. In the absence of such simulation platforms, Cloud customers and providers have to rely either on theoretical and imprecise evaluations, or on try-and-error approaches that lead to inefficient service performance and revenue generation.

The main advantage of using CloudSim for initial performance testing include: (i) time effectiveness: it requires very less effort and time to implement Cloud-based application provisioning test environment and (ii) flexibility and applicability: developers can model and test the performance of their application services in heterogeneous Cloud environments (Amazon EC2, Microsoft Azure) with little programming and deployment effort.

CloudSim offers the following novel features: (i) support for modeling and simulation of large scale Cloud computing environments, including data centers, on a single physical computing node; (ii) a self-contained platform for modeling Clouds, service
brokers, provisioning, and allocations policies; (iii) support for simulation of network connections among the simulated system elements; and (iv) facility for simulation of federated Cloud environment that inter-networks resources from both private and public domains, a feature critical for research studies related to Cloud-Bursts and automatic application scaling. Some of the unique features of CloudSim are: (i) availability of a virtualization engine that aids in creation and management of multiple, independent, and co-hosted virtualized services on a data center node; and (ii) flexibility to switch between space-shared and time-shared allocation of processing cores to virtualized services.

The applications that may benefit from the aforementioned federated Cloud computing infrastructure include social networks such as Facebook and MySpace, and Content Delivery Networks (CDNs). Social networking sites serve dynamic contents to millions of users, whose access and interaction patterns are difficult to predict. In general, social networking web-sites are built using multi-tiered web applications such as WebSphere and persistency layers like the MySQL relational database. Usually, each component will run in a different virtual machine, which can be hosted in data centers owned by different Cloud computing providers. Additionally, each plug-in developer has the freedom to choose which Cloud computing provider offers the services that are more suitable to run his/her plug-in. As a consequence, a typical social networking web application is formed by hundreds of different services, which may be hosted by dozens of Cloud-oriented data centers around the world. Whenever there is a variation in temporal and spatial locality of workload (usage pattern), each application component must dynamically scale to offer good quality of experience to users.

Figure 1 shows the layered implementation of the CloudSim software framework and architectural components. At the lowest layer is the SimJava discrete event simulation engine that implements the core functionalities required for higher-level simulation frameworks such as queuing and processing of events, creation of system components, communication between components, and management of the simulation clock.

The latest emergence of Cloud computing is a significant step towards realizing this utility computing model since it is heavily driven by industry vendors. Cloud computing promises to deliver reliable services through next-generation data centers built on virtualized compute and storage technologies. Users will be able to access applications and data from a “Cloud” anywhere in the world on demand and pay based on what they use.

Many high-performance computing (HPC) and scientific workloads (i.e., the set of computations to be completed) in cloud environment, such as those in bioinformatics, biomedical informatics, cheminformatics and geoinformatics, are complex workflows of individual jobs. The workflow is usually organized as a directed acyclic graph (DAG), in which the constituent jobs (i.e., nodes) are either control or data dependent.

Design and Implementation of Cloudsim

1.1. Datacenter

This class models the core infrastructure level services (hardware, software) offered by resource providers in a Cloud computing environment. It encapsulates a set of compute hosts (blade servers) that can be either homogeneous or heterogeneous as regards to their resource configurations (memory, cores, capacity, and storage). Furthermore, every Datacenter component instantiates a generalized resource provisioning component that implements a set of policies for allocating bandwidth, memory, and storage devices.

1.2. Datacenter Broker
This class models a broker, which is responsible for mediating between users and service providers depending on users’ QoS requirements and deploys service tasks across Clouds. The broker acting on behalf of users identifies suitable Cloud service providers through the Cloud Information Service (CIS) and negotiates with them for an allocation of resources that meets QoS needs of users. The researchers and system developers must extend this class for conducting experiments with their custom developed application placement policies.

1.3. Cloudlet

This class models the Cloud-based application services (content delivery, social networking, business workflow), which are commonly deployed in the data centers. CloudSim represents the complexity of an application in terms of its computational requirements. Every application component has a pre-assigned instruction length (inherited from GridSim’sGridlet component) and amount of data transfer (both pre and post fetches) that needs to be undertaken for successfully hosting the application.

1.4. Virtual Machine

A virtual machine is a software implementation of a computing environment in which an operating system or program can be installed and run. Virtual machines are created within a virtualization layer, such as hypervisor or virtualization platform runs on top of client or server operating system. It runs inside a host, sharing host list with other VMs. It processes cloudlets. This processing happens according to a policy, defined by the Cloudlet Scheduler. Each VM has an owner, which can submit cloudlets to the VM to be executed.

2. RELATED WORK

In these work lot of techniques implemented through the scheduling and trustworthiness of cloud computation framework. M. Abbadi [2] proposes service of middleware at cloud virtual layer a layer represents Cloud’s resources that share common characteristics. Layering concept helps in understanding the relations and interactions amongst Cloud resources. A Horizontal Layer to be the parent of physical, virtual or application layers. Each Horizontal Layer contains Domains. A Domain represents related resources which enforce a Domain defined policy. Domains at physical layer are related to Cloud infrastructure and, therefore, are associated with infrastructure properties and policies. Domains at virtual and application layers are Cloud user specific and therefore are associated with Cloud user properties. Moving current Cloud infrastructure to the potential trustworthy Internet scale Cloud critical infrastructure requires a set of trustworthy middleware. Middleware glues resources member in Cloud layers together by providing a set of automated self-managed services that consider users security and privacy requirements by design. These services should be transparent to Cloud users and should require minimal human intervention. The implementation of self-managed services’ functions in middleware would mainly depend on the middleware location within Cloud’s layers.

Virtualization technology is becoming increasingly common in datacenters, since it allows for collocation of multiple workloads, consisting of operating systems, middleware and applications, in different virtual machines (VMs) on shared physical hardware platforms. However, when coupled with the ease of VM migration, this trend increases the potential surface for security attacks. It presents the IBM Trusted Virtual Datacenter (TVDc) technology developed to address the need for strong isolation and integrity guarantees. We present and discuss various components that constitute TVDc: the Trusted Platform Module (TPM), the virtual TPM, the IBM hypervisor security architecture (sHype) and the associated systems management software. Virtualization technology is used increasingly in datacenters, both for commodity and high-end servers.

Among the primary drivers for this trend is the ability to aggregate multiple workloads to run on the same set of physical resources, thus resulting in increased server utilization and reduced space and power consumption. TVD concept in a scenario where the owner of a physical data center offers the operation of independent virtual datacenters (VDCs) to several customers. Access to a host system is limited to the guest VMs currently running on it.

I. M. Abbadi and N. Cornelius [6] propose challenges of research and agenda in dynamics of trust in cloud A Cloud provider can assess its own resources’ trust worthiness, which enables the Cloud to realize its trust level; and when Cloud providers collaborate then they can define certain levels of trust for resources involved in the collaboration. The assessment of the level of trust in automated self-managed services is one of the key factors which helps assessing Cloud provider operational trustworthiness. The Cloud and some of the emerging technologies that could be used to establish trust in the Cloud including enabling more jurisdiction over the consumers’ data through provision of remote access control, transparency in the security capabilities of the providers, independent certification of Cloud services for security properties and capabilities and the use of private enclaves. The loss of control on assets, regulatory disparities between geographic locations where the physical infra structure may reside, security and lack of visibility into the security mechanisms
employed, and certification and compliance to standards.

J. Lyle and A. Martin[16] propose feasibility of remote attestation of web service Integrity reporting is the core mechanism proposed by the Trusted Computing Group (TCG) for establishing trust in a computing platform. The vast number of available applications, operating systems and hardware drivers mean that any list of trustworthy software and hardware will need to be unmanageably large. The few realistic methods for establishing if any one configuration is trustworthy. These problems spell disaster for trusted computing, and may cause researchers and developers to dismiss the functionality provided.

The little effort has been spent within the trusted computing community to support or refute these criticisms. While the general arguments are difficult to deny, an assessment of their validity in different contexts is missing. The supposed wide range of configurations may not existing embedded systems. Owner can reliably find out exactly what software and hardware is in use, they should be able to recognise and eliminate any malware, viruses and trojans. A great deal of infrastructure is required to make his idea practical, including new hardware, modifications to applications and databases of known, trustworthy platform configurations.

Bootstrapping of trust in commodity computers provide proposal of P. Bryan, M. M. Jonathan, and P. Adrian[18] The businesses and individuals entrust progressively greater amounts of security sensitive data to computer platforms, it becomes increasingly important to inform them whether their trust is warranted. While the design and validation of secure software is an interesting study in its own right, we focus this survey on how trust can be bootstrapped in commodity computers specifically by conveying information about a computer’s current execution environment to an interested party.

As businesses and individual sent rust progressively greater amounts of security-sensitive data to computer platforms, it becomes increasingly important to inform them whether their trust is warranted. While the design and validation of secure software is an interesting study in its own right, we focus this survey on how trust can be bootstrapped in commodity computers specifically by conveying information about a computer’s current execution environment to an interested party.

K. M. Khan and Q. M. Malluhi [12] propose establishing trust in cloud computing. The emerging technologies that can help address the challenges of trust in cloud computing. Cloud computing provides many opportunities for enterprises by offering a range of computing services. The competitive environment, the service dynamism, elasticity, and choices offered by this highly scalable technology are too attractive for enterprises to ignore. Contractual relationships are often used to establish trust. In a typical business environment, an organization is compensated if the service isn’t delivered as expected.

Cloud providers similarly use service-level agreements (SLAs) to boost consumers’ trust. Unfortunately, these might not help in cloud computing. Trust in cloud computing is related more to preventing a trust violation than to guaranteeing compensation should a violation occur.

3. SYSTEM ARCHITECTURE

![System Design](image)

Fig2 provide cloud environment consist of enormous user requirement and infrastructure properties. User requirements are both hardware and software requirement. Infrastructure properties are availability, reliability, security, privacy concern. User enter the cloud environment made a chain of trust consist of username, password, and provide some unique id to enter the cloud. Scheduling perform how to commit resource between possible task. Trust management is implementing information security, specifically access control policies. Resource allocation specifies the virtual machine managed through the cloudlet length of resource management.

4. PROPOSED WORK

4.1. Create Cloud Environment

A simulation toolkit enables modeling and simulation of Cloud computing systems and application provisioning environments. The CloudSim toolkit supports both system and behavior modeling of
Cloud system components such as data centers, virtual machines (VMs) and resource provisioning policies. It implements generic application provisioning techniques that can be extended with ease and limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both single and inter-networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing policies and provisioning techniques for allocation of VMs under inter-networked Cloud computing scenarios.

In this module we are creating cloud users and datacenters and cloud virtual machines as per our requirement. Job manager, Cloud controller also created. The Job Manager receives the client’s jobs, is responsible for scheduling them, and coordinates their execution. It is capable of communicating with the interface the cloud operator provides to control the instantiation of VMs. We call this interface the Cloud Controller. By means of the Cloud Controller the Job Manager can allocate or deallocate VMs according to the current job execution phase.

According to our objective of this project we need to analyze the performance and Trusted User. For that first creating a cloud environment with the help of VMWare. In creating the cloud environment by implementing the Datacenter, Data broker, VM. VM denotes the number of available virtual machines, and Cloud broker is the mediator to perform the job in the resources. The IP suite can be viewed as a set of layers, each layer having the property that it only uses the functions of the layer below, and only exports functionality to the layer above. A system that implements protocol behavior consisting of layers is known as a protocol stack. Protocol stacks can be implemented either in hardware or software, or a mixture of both. Typically, only the lower layers are implemented in hardware, with the higher layers being implemented in software.

4.2 Chain of Trust

A chain of trust is designed to allow multiple users to create and use software on the system, which would be more difficult if all the keys were stored directly in hardware. The signing authority will only sign boot programs that enforce security, such as only running programs that are themselves signed, or only allowing signed code to have access to certain features of the machine. The final software can be trusted to have certain properties, because if it had been illegally modified its signature would be invalid, and the previous software would not have executed it. This process results in a chain of trust. The final software can be trusted to have certain properties, because if it had been illegally modified its signature would be invalid, and the previous software would not have executed it. The previous software can be trusted, because it, in turn, would not have been loaded if its signature would have been invalid. The trustworthiness of each layer is guaranteed by the one before, back to the Trust Anchor - the hardware. It would be possible to have the hardware check the suitability for every single piece of software. However, this would not produce the flexibility that a "chain" provides. In a chain, any given link can be replaced with a different version to provide different properties, without having to go all the way back to the trust anchor.

4.3 Scheduling

Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Shared resources are available at certain times and events are planned during these times. The schedule maintains separation between users of the resources. Schedulers, often termed workload automation, typically provide a single point of control for definition and monitoring. Scheduling is the method by which threads, processes or data flows are given access to system resources. This is usually done to load balance a system effectively or achieve a target quality of service. The need for a scheduling algorithm arises from the requirement for most modern systems to perform multitasking and multiplexing.

The scheduler also must ensure that processes can meet deadlines; this is crucial for keeping the system stable. Shared resources are available at certain times and events are planned during these times. The schedule maintains separation between users of the resources. The process of creating a schedule is called scheduling. These provide the production scheduler with powerful graphical interfaces which can be used to visually optimize real-time workloads in various stages of production, and pattern recognition allows the software to automatically create scheduling opportunities which might not be apparent without this view into the data.

Job scheduling is most important task in cloud computing environment because user have to pay for resources used based upon time. Hence efficient utilization of resources must be important and for that scheduling plays a vital role to get maximum benefit from the resources. In this paper we are studying various scheduling algorithm and issues related to them in cloud computing. The main advantage of job scheduling algorithm is to achieve a high performance computing and the best system throughput.

4.4 Trust Management

The trust management is an abstract system that processes symbolic representations of social trust, usually to aid automated decision-making process. The automated verification of actions against security policies. In this concept, actions are allowed if they demonstrate sufficient credentials, irrespective of their
actual identity, separating symbolic representation of trust from the actual person.

Trust management can be seen as a symbol-based automation of social decisions related to trust, where social agents instruct their technical representations how to act while meeting technical representations of other agents. Further automation of this process can lead to automated trust negotiations where technical devices negotiate trust by selectively disclosing credential, according to rules defined by social agents that they represent.

4.5. Resource Allocation

Resource allocation is used to assign the available resources in an economic way. Resource allocation is the scheduling of activities and the resources required by those activities while taking into consideration both the resource availability. Resources could be access to a section of the computer’s memory, data in a device interface buffer, one or more files, or the required amount of processing power. A single processor can only perform one process at a time, regardless of the amount of programs loaded by the user.

The main objective is to smooth resources requirements by shifting slack jobs beyond periods of peak requirements. Some of the methods essentially replicate what a human scheduler would do if he had enough time; others make use of unusual devices or procedures designed especially for the computer. They of course depend for their success on the speed and capabilities of electronic computers. What to produce concerns allocation of resources among alternative uses. The economy must allocate the varieties of goods and services which will yield the greatest satisfaction to consumers. The process of dividing up and distributing available, limited resources to competing, alternative uses that satisfy unlimited wants and needs. An efficient resource allocation exists if society has achieved the highest possible level of satisfaction of wants and needs from the available resources AND resources cannot be allocated differently to achieve any greater satisfaction.

5. EXPERIMENT AND RESULTS

This paper presents trustworthy scheduling in cloud environment provide the cloudsim framework. Fig 3 provide the analysis of scheduling based on the cloud computing framework. It also specifies the allocation of resource based on the virtual machine. Allocation consists of two constraints as are length and size. Fig 4 provides the allocation of resource based on the total length through the cloudlet length and multiplication of performance evaluation.

6. CONCLUSION

Critical infrastructure services and organizations alike will not outsource their critical applications to a public cloud without strong assurances that their requirements will be enforced. This is a challenging problem to address, which we have been working on as part of TClouds project. A key point for addressing such a problem is providing a trustworthy cloud scheduler supported by trustworthy data enabling the scheduler to make the right decision. Such a trustworthy source of data is related to both user requirements and infrastructure properties. User requirements and infrastructure properties are enormous and assuring their trustworthiness is our long term objective. This covers one of the most important properties which is about measuring the trust status of the cloud infrastructure, and enabling users to define their minimal acceptable level of trust.

Key management is the management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling; key scheduling typically refers to the internal handling of key material within the operation of a cipher. Successful key
management is critical to the security of a cryptosystem. In practice it is arguably the most difficult aspect of cryptography because it involves system policy, user training, organizational and departmental interactions, and coordination between all of these elements. In future work can include trustworthiness of user through key management technique to provide security and enhance the performance of scheduling in cloud environment.

REFERENCES
1) M. A. Imad, 2011 “Clouds infrastructure taxonomy, properties, and management services,” in AdvancesinComputingandCommunications