\(\alpha \) - lacunary \(\Delta \) - statistically convergent in fuzzy soft real numbers

Thangaraj Beaula \(^1\), R. Raja \(^2\)
\(^1\), \(^2\) Department of Mathematics, T.B.M.L. College Porayar 609 307, Tamil Nadu, India
E-mail: \(^1\) edwinbeaula@yahoo.co.in, \(^2\) itmraja@gmail.com

ABSTRACT

In this paper we introduced the space of \(\Delta \) - bounded and \(\Delta \) - convergent difference sequence of fuzzy soft real numbers and the space of \(\alpha \) - lacunary \(\Delta \) - statistically convergent different sequence of fuzzy soft real numbers relating these concepts some theorem are derive.

Keyword - Fuzzy soft real number, \(\Delta \) - bounded, \(\Delta \) - convergent and \(\alpha \) - lacunary \(\Delta \) - statistically convergent.

I. INTRODUCTION

The concept of fuzzy sets was first introduced by Zadeh[1]. Bounded and convergent sequence of fuzzy numbers were introduced by Matloka[11]. Matloka show that every convergent sequence of fuzzy numbers is bounded. Later on sequence of fuzzy numbers have been discussed by Nanda[13], Nuray and Savaş[15], Nuray [16], Kwon[8], Savaş [17], Bilgin [2] Basarır and Mursaleen [1,12], Fang and Huang [4] and many others. The concept of statistical convergence was introduced Fast [5]. Schoenberg [18] studied statistical convergence as a summability method and listed some of elementary properties of statistical convergence.

As an extension we have defined new concepts \(\Delta \) - convergent, \(\Delta \) - bounded and \(\alpha \) - lacunary \(\Delta \) - statistically convergent sequence in the space of fuzzy soft real numbers.

II. PRELIMINARIES

In this section we present some basic definitions of fuzzy soft set. Throughout our discussion, \(U \) refers to an initial universe, \(E \) the set of all parameters for \(U \) and \(P(\tilde{U}) \) the set of all fuzzy sets of \(U \). \((U, E) \) means the universal set \(U \) and the parameter set \(E \).

Definition 2.1 [6]
A pair \((F, E)\) is called a soft set (over \(U \)) if and only if \(F \) is a mapping of \(E \) into the set of all subsets of the set \(U \).

In otherwords, the soft set is a parameterized family of subsets of the set \(U \). Every set \(F(\varepsilon), \varepsilon \in E \), from this family may be considered as the set of \(\varepsilon \) elements of the soft set \((F, E)\), or as the set of \(\varepsilon \) - approximate elements of the soft set.

Definition 2.2 [8]
A pair \((F, A)\) is called a fuzzy soft set over \(U \) where \(F : A \to P(\tilde{U}) \) is a mapping from \(A \) into \(P(\tilde{U}) \).

Definition 2.3 [8]
For two fuzzy soft sets \((F, A)\) and \((G, B)\) in a fuzzy soft class \((U, E)\), we say that \((F, A)\) is a fuzzy soft subset of \((G, B)\), if

(i) \(A \subseteq B \)
(ii) For all \(\varepsilon \in A, F(\varepsilon) \subseteq G(\varepsilon) \) and is written as \((F, A) \preceq (G, B)\).

Definition 2.4 [8]
Union of two fuzzy soft sets \((F, A)\) and \((G, B)\) in a soft class \((U, E)\) is a fuzzy soft set \((H, C)\) where \(C = A \cup B \) and \(\forall \varepsilon \in C, H(\varepsilon) = \begin{cases} F(\varepsilon), & \text{if } \varepsilon \in A - B \\ G(\varepsilon), & \text{if } \varepsilon \in B - A \end{cases} \) and is written as \((F, A) \cup (G, B) = (H, C)\).

Definition 2.5 [8]
Intersection of two fuzzy soft sets \((F, A)\) and \((G, B)\) in a soft class \((U, E)\) is a fuzzy soft set \((H, C)\) where \(C = A \cap B \) and \(\forall \varepsilon \in C, H(\varepsilon) = F(\varepsilon) \) or \(G(\varepsilon) \) (as both are same fuzzy set) and is written as \((F, A) \cap (G, B) = (H, C)\).

Definition 2.6 [13]
Let \(A \subseteq E \) then the mapping \(F_A : E \to \tilde{P}(U) \), defined by \(F_A(\varepsilon) = \mu^\varepsilon F_A \) (a fuzzy subset of \(U \)), is called soft set over \((U, E)\), where \(\mu^\varepsilon F_A = \tilde{0} \) if \(e \in E - A \) and \(\mu^\varepsilon F_A \neq \tilde{0} \) if \(e \in A \). The set of all fuzzy soft set over \((U, E)\) is denoted by \(FS(U, E) \).

Definition 2.7 [13]
The fuzzy soft set \(F_\emptyset \in FS(U, E) \) is called null fuzzy soft set and it is denoted by \(\tilde{0} \).

Here \(F_\emptyset (e) = \tilde{0} \) for every \(e \in E \).
Definition 2.8 [13]
Let \(F_E \subseteq FS(U, E) \) and \(F_E(e) = \tilde{I} \) for all \(e \in E \).
Then \(F_E \) is called absolute fuzzy soft set. It is denoted by \(\tilde{E} \).

Definition 2.9 [13]
Let \(F_A, G_B \subseteq FS(U, E) \). If \(F_A(e) \subseteq G_B(e) \) for all \(e \in E \); i.e., if \(\mu \subseteq G_B \) for all \(e \in E \), i.e., if \(\mu \subseteq G_B \) for all \(x \in U \) and for all \(e \in E \), then \(F_A \) is said to be fuzzy soft subset of \(G_B \), denoted by \(F_A \subseteq G_B \).

Definition 2.10 [13]
Let \(F_A, G_B \subseteq FS(U, E) \). Then the union of \(F_A \) and \(G_B \) is also fuzzy soft set \(H_C \), defined by \(H_C(e) = \mu + H_C = \mu \cup G_B \) for all \(e \in E \) where \(C = A \cup B \). Here we write \(H_C = F_A \cup G_B \).

Definition 2.11 [13]
Let \(F_A, G_B \subseteq FS(U, E) \). Then the intersection of \(F_A \) and \(G_B \) is also a fuzzy soft set \(H_C \), defined by \(H_C(e) = \mu \cap H_C = \mu \cap G_B \) for all \(e \in E \) where \(C = A \cap B \). Here we write \(H_C = F_A \cap G_B \).

Definition 2.12
Let \(F_A \subseteq FS(U, E) \). The complement of \(F_A \) is denoted by \(F_A \) and is defined by \(F_A : E \rightarrow \tilde{P}(U) \) is a mapping given by \(F_A : (e) = [F(e)]^c \), \(\forall e \in E \).

III. \(\alpha \)-LACUNARY \(\Delta \)-STATISTICALLY CONVERGENT

3.1 Definition
Let us denote the fuzzy soft real number \(\tilde{r}_e \) where \(r \in R \) and \(\tilde{r} : E \rightarrow I^R \) where \(I^R \) is the set of all fuzzy sets on \(R \) and \(E \) is the parameter set. Denote fuzzy soft real number by \(\tilde{r} \). \(\tilde{r} \) is called the \(\alpha \)-level set of \(\tilde{r} \) corresponding to the parameter \(e \in E \) and is defined as \(\tilde{r} \) where \(E \subseteq R \).

3.2 Definition
Let \(\tilde{t}_n \) be a sequence of fuzzy soft numbers and its corresponding \(\alpha \)-level sequence be \(\tilde{t}_n \) then \(\tilde{t}_n \) is said to be \(\Delta \)-bounded if \(\{ \Delta \tilde{t}_n \} \) is bounded subset of real numbers and is said to be \(\Delta \)-convergent to a real number \(\alpha \) if \(\lim_{n \to \infty} \Delta \tilde{t}_n = \alpha \), that is for every \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that \(| \Delta \tilde{t}_n - \alpha | < \varepsilon \) for all \(n > n_0 \) provided \(\Delta \tilde{t}_n = [\tilde{t}_{n+1}]_\alpha - [\tilde{t}_n]_\alpha \). Let us denote \(\Delta \)-bounded and \(\Delta \)-convergent of \(\alpha \)-level fuzzy soft numbers to be \(\Delta^e \) and \(\Delta^a \).

3.3 Definition
Let \(\theta = (k_i) \) be a lacunary sequence and let \(\tilde{t}_n = [\tilde{t}_n]_\alpha \) be a \(\alpha \)-level sequence of fuzzy soft real numbers then \(\tilde{t}_n \) is said to be \(\alpha \)-lacunary \(\Delta \)-statistically convergent to a real number \(t \) if for every \(\varepsilon > 0 \) \(\lim_{r \to \infty} \frac{1}{h_r} \{ k \in I_r : | \Delta \tilde{t}_n - t | \geq \varepsilon \} = 0 \).

Let us denote it by \(S_\theta \lim \Delta \tilde{t}_n = t \). Let us denote the set of all \(\alpha \)-lacunary \(\Delta \)-statistically convergent sequence be denoted \(S(\Delta^a) \).

3.1 Theorem
Let \(\{ \tilde{s}_n \} \) be a sequence of fuzzy soft real numbers

1. If \(S_\theta \lim \Delta \tilde{t}_n = t \) and \(c \in R \) then \(S_\theta \lim c \Delta \tilde{t}_n = ct \).
2. If \(S_\theta \lim \Delta \tilde{t}_n = s \) and \(S_\theta \lim \Delta \tilde{t}_n = t \) then \(S_\theta \lim (\Delta \tilde{t}_n + \Delta \tilde{t}_n) = s + t \).

Proof:
For \(\alpha \in [0, 1] \) and \(c \in R \) then
\[
|c \Delta \tilde{t}_n - c t| = |c (\Delta \tilde{t}_n - t)| \geq |c t| \quad \Delta \tilde{t}_n - t |t|
\]
For given \(\varepsilon > 0 \) we have
\[
\frac{1}{h_r} \{ k \in I_r : |c \Delta \tilde{t}_n - c t | \geq \varepsilon \}
\]
\[
\frac{1}{h_r} \left\{ k \in I_r : \left| \Delta [\tilde{s}_n]_{e,a} - t \right| \geq \varepsilon \right\} = 1
\]

From (1) we get \(S_\theta - \lim c \Delta [\tilde{s}_n]_{e,a} = ct \)

(2) suppose that
\(S_\theta - \lim \Delta [\tilde{s}_n]_{e,a} = s \) and
\(S_\theta - \lim \Delta [\tilde{t}_n]_{e,a} = t \)

By Minkowski’s inequality we get,
\[
\left| \Delta [\tilde{s}_n]_{e,a} + \Delta [\tilde{t}_n]_{e,a} \right| - (s+t) \leq \left| \Delta [\tilde{s}_n]_{e,a} - s \right| + \left| \Delta [\tilde{t}_n]_{e,a} - t \right|
\]

Therefore given \(\varepsilon > 0 \) we have,
\[
\frac{1}{h_r} \left\{ k \in I_r : \left| \Delta [\tilde{s}_n]_{e,a} + \Delta [\tilde{t}_n]_{e,a} - (s+t) \right| \geq \varepsilon \right\}
\]

Now consider the \(k_m \)-th term of the statistical limit expression
\[
\frac{1}{n} \left\{ k \leq n : \left| [\tilde{t}_n]_{e,a} - t \right| \geq \varepsilon \right\} \Rightarrow \frac{1}{k_m} \left\{ k \in \bigcup_{k=1}^m I_r : \left| [\tilde{t}_n]_{e,a} - t \right| \geq \varepsilon \right\}
\]

Hence
\(S_\theta - \lim (\Delta [\tilde{t}_n]_{e,a}) = s \)

3.2 Theorem
If \(\{s_n\} \subseteq s(\Delta^\alpha) \cup s_\theta (\Delta^\alpha) \) then we have
\(S_\theta - \lim (\Delta [\tilde{t}_n]_{e,a}) = s - \lim (\Delta [\tilde{s}_n]_{e,a}) \)

Proof
Suppose that \(s - \lim (\Delta [\tilde{s}_n]_{e,a}) = t \) and
\(S_\theta - \lim (\Delta [\tilde{t}_n]_{e,a}) = t \) and \(t \neq \bar{t} \)

Then we have \(\left| t - \bar{t} \right| > 0 \)
Suppose \(\left| t - \bar{t} \right| / 2 > \varepsilon > 0 \)

We have
\[
\lim_{n \to \infty} \frac{1}{n} \left\{ k \leq n : \left| [\tilde{t}_n]_{e,a} - t \right| \geq \varepsilon \right\} = 1
\]
\[|\Delta [\tilde{t}_n]_{e,a} - \Delta [\tilde{t}_m]_{e,a}| < \varepsilon \text{ for } n, m \geq n_0 \]

As \(d(x, y) = |x - y|\) is a standard metric on real numbers \(R\) and \(R\) is complete with this metric, \(\{\Delta [\tilde{t}_n]_{e,a}\}\) is a Cauchy sequence in \(R\). And so it converges to \(t \in R\)

\[
\text{(ie) } \lim_{n \to \infty} \Delta [\tilde{t}_n]_{e,a} = t
\]

This implies \(|\Delta [\tilde{t}_n]_{e,a} - t| < \varepsilon\) for all \(n \geq n_0\).

Again consider (1)

\[
D([\tilde{t}_n]_{e,a}, [\tilde{t}_m]_{e,a}) = \inf \{d(\Delta [\tilde{t}_n]_{e,a}, \Delta [\tilde{t}_m]_{e,a}) \}
\]

Allow \(m \to \infty\) then

\[
\lim_{m \to \infty} D([\tilde{t}_n]_{e,a}, [\tilde{t}_m]_{e,a}) = \inf \{d(\Delta [\tilde{t}_n]_{e,a}, t)\} \to 0
\]

as \(n \to \infty\)

Hence

\[
D([\tilde{t}_n]_{e,a}, [\tilde{t}_m]_{e,a}) \to 0 \text{ as } n \to \infty
\]

Thus \(\Delta^\alpha\) is complete and by similar argument \(\Delta^\varepsilon\) is complete.

3.4 Theorem

Let \(\{\tilde{t}_n\}\) be a sequence of fuzzy soft real numbers such that \(S_\theta - \lim(\Delta [\tilde{t}_n]_{e,a}) = t\) exists then it is unique.

Proof

Suppose there exists \(t_1, t_2\) with \(t_1 \neq t_2\) such that

\[
S_\theta - \lim(\Delta [\tilde{t}_n]_{e,a}) = t_1 \text{ and } S_\theta - \lim(\Delta [\tilde{t}_n]_{e,a}) = t_2.
\]

Then for every \(\varepsilon > 0\),

\[
\lim_{r \to \infty} \frac{1}{h_r} \{k \in I_r : |\Delta [\tilde{t}_n]_{e,a} - t_1| \geq \varepsilon \} = 0 \text{ and }
\]

\[
\lim_{r \to \infty} \frac{1}{h_r} \{k \in I_r : |\Delta [\tilde{t}_n]_{e,a} - t_2| \geq \varepsilon \} = 0
\]

This implies

\[
|\Delta [\tilde{t}_n]_{e,a} - t_1| < \varepsilon \text{ and } |\Delta [\tilde{t}_n]_{e,a} - t_2| < \varepsilon
\]

Also

\[
|t_1 - t_2| = |\Delta [\tilde{t}_n]_{e,a} - t_1 + t_2 - \Delta [\tilde{t}_n]_{e,a}| \\
\leq | -t_1 + \Delta [\tilde{t}_n]_{e,a}| + |\Delta [\tilde{t}_n]_{e,a} - t_2| < 2 \varepsilon
\]

Where \(\varepsilon\) is arbitrary

Hence \(t_1 = t_2\).

IV. CONCLUSION

In this paper we have defined new concepts \(\Delta\)-convergent, \(\Delta\)-bounded and \(\alpha\)-lacunary \(\Delta\)-statistically convergent sequence in the space of fuzzy soft real numbers and related to this some basic theorem are proved.

REFERENCES

Journal Papers:

www.ijsret.org