On JAM of Triangular Fuzzy Number Matrices

C.Jaisankar¹ and R.Durgadevi²
Department of Mathematics, A. V. C. College (Autonomous), Mannampandal – 609305, India

ABSTRACT
The fuzzy set theory has been applied in many fields such as management, engineering, theory of matrices and so on. In this paper, some elementary operations on proposed triangular fuzzy numbers (TFNs) are defined. We also have been defined some operations on triangular fuzzy matrices(TFMs). We introduced the new matrix and the notion of JAM fuzzy matrices are introduced and discussed. Some of their relevant properties have also been verified

Keywords - Fuzzy Arithmetic, Fuzzy number, Triangular fuzzy number (TFN), Triangular fuzzy matrix (TFM), JAM fuzzy matrix (JFM).

I. INTRODUCTION
Fuzzy sets have been introduced by Lofti.A.Zadeh[12] Fuzzy set theory permits the gradual assessments of the membership of elements in a set which is described in the interval [0,1]. It can be used in a wide range of domains where information is incomplete and imprecise. Interval arithmetic was first suggested by Dwyer [2] in 1951, by means of Zadeh’s extension principle [13,14], the usual Arithmetic operations on real numbers can be extended to the ones defined on Fuzzy numbers. Dubosis and Prade [1] has defined any of the fuzzy numbers as a fuzzy subset of the real line [4]. A fuzzy number is a quantity whose values are imprecise, rather than exact as is the case with single – valued numbers.

Triangular fuzzy numbers (TFNs) are frequently used in application. It is well known that the matrix formulation of a mathematical formula gives extra facility to study the problem. Due to the presence of uncertainty in many mathematical formulations in different branches of science and technology. We introduce triangular fuzzy matrices (TFMs). To the best of our knowledge, no work is available on TFMs, through a lot of work on fuzzy matrices is available in literature. A brief review on fuzzy matrices is given below.

Fuzzy matrices were introduced for the first time by Thomason [11] who discussed the convergence of power of fuzzy matrix. Fuzzy matrices play an important role in scientific development. Two new operations and some applications of fuzzy matrices are given in [7,8,9,10]. JAM matrices play an important role in many application and have been the object of several studies [3,5,6].

The paper organized as follows, Firstly in section 2, we recall the definition of Triangular fuzzy number and some operations on triangular fuzzy numbers (TFNs). In section 3, we have reviewed the definition of triangular fuzzy matrix (TFM) and some operations on Triangular fuzzy matrices (TFMs). In section 4, we defined the notion of JAM triangular fuzzy matrices. In section 5, we have presented some properties of JAM of Triangular fuzzy matrices. Finally in section 6, conclusion is included.

II. PRELIMINARIES
In this section, We recapitulate some underlying definitions and basic results of fuzzy numbers.

Definition 2.1 Fuzzy set
A fuzzy set is characterized by a membership function mapping the element of a domain, space or universe of discourse X to the unit interval [0,1].

Triangular fuzzy numbers (TFNs) are frequently used in application. It is well known that the matrix formulation of a mathematical formula gives extra facility to study the problem. Due to the presence of uncertainty in many mathematical formulations in different branches of science and technology. We introduce triangular fuzzy matrices (TFMs). To the best of our knowledge, no work is available on TFMs, through a lot of work on fuzzy matrices is available in

www.ijsret.org
These membership grades are often represented by real numbers ranging from $[0,1]$.

Definition 2.2 Normal fuzzy set

A fuzzy set A of the universe of discourse X is called a normal fuzzy set implying that there exists at least one $x \in X$ such that $\mu_A(x) = 1$.

Definition 2.3 Convex fuzzy set

A fuzzy set $A = \{(x, \mu_A(x)) \subseteq X$ is called Convex fuzzy set if all A_α are Convex set (i.e.,) for every element $x_1 \in A_\alpha$ and $x_2 \in A_\alpha$ for every $\alpha \in [0,1]$, $\lambda x_1 + (1- \lambda) x_2 \in A_\alpha$ for all $\lambda \in [0,1]$ otherwise the fuzzy set is called non-convex fuzzy set.

Definition 2.4 Fuzzy number

A fuzzy set \tilde{A} defined on the set of real number R is said to be fuzzy number if its membership function has the following characteristics

i. \tilde{A} is normal
ii. \tilde{A} is convex
iii. The support of \tilde{A} is closed and bounded then \tilde{A} is called fuzzy number.

Definition 2.5 Triangular fuzzy number

A fuzzy number $\tilde{A} = (a_1, a_2, a_3)$ is said to be a triangular fuzzy number if its membership function is given by

$$
\mu_{\tilde{A}}(x) = \begin{cases}
0 & ; x \leq a_1 \\
\frac{x - a_1}{a_2 - a_1} & ; a_1 \leq x \leq a_2 \\
1 & ; x = a_2 \\
\frac{a_3 - x}{a_3 - a_2} & ; a_2 \leq x \leq a_3 \\
0 & ; x > a_3
\end{cases}
$$

Definition 2.6 Ranking function

We defined a ranking function $\mathcal{R}: F(R) \rightarrow R$ which maps each fuzzy numbers to real line $F(R)$ represent the set of all triangular fuzzy number. If R be any linear ranking function $\mathcal{R}(\tilde{A}) = \left(\frac{a_1 + a_2 + a_3}{3} \right)$

Also we defined orders on $F(R)$ by

(i). $\mathcal{R}(\tilde{A}) \geq \mathcal{R}(\tilde{B})$ if and only if $\tilde{A} \geq_R \tilde{B}$

(ii). $\mathcal{R}(\tilde{A}) \leq \mathcal{R}(\tilde{B})$ if and only if $\tilde{A} \leq_R \tilde{B}$

(iii). $\mathcal{R}(\tilde{A}) = \mathcal{R}(\tilde{B})$ if and only if $\tilde{A} = _R \tilde{B}$

Definition 2.7 Arithmetic operations on triangular fuzzy numbers (TFNs)

Let $\tilde{A} = (a_1, a_2, a_3)$ and $\tilde{B}= (b_1, b_2, b_3)$ be triangular fuzzy numbers (TFNs) then we defined, Addition $\tilde{A} + \tilde{B} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$

Subtraction $\tilde{A} - \tilde{B} = (a_1 - b_3, a_2 - b_2, a_3 - b_1)$

Multiplication $\tilde{A} \times \tilde{B} = (a_1 \mathcal{R}(\tilde{B}), a_2 \mathcal{R}(\tilde{B}), a_3 \mathcal{R}(\tilde{B}))$

where $\mathcal{R}(\tilde{B}) = \left(\frac{b_1 + b_2 + b_3}{3} \right)$ or $\mathcal{R}(\tilde{B}) = \left(\frac{b_1 + b_2 + b_3}{3} \right)$
Division

\[\tilde{A} + \tilde{B} = \left(\frac{a_1}{\mathfrak{R}(\tilde{B})}, \frac{c}{\mathfrak{R}(\tilde{B})}, \frac{a_3}{\mathfrak{R}(\tilde{B})} \right) \]

where \(\mathfrak{R}(\tilde{B}) = \left(\frac{b_1 + b_2 + b_3}{3} \right) \) or \(\mathfrak{R}(\tilde{b}) = \left(\frac{b_1 + b_2 + b_3}{3} \right) \)

Scalar multiplication

\[k\tilde{A} = \left(ka_1, ka_2, ka_3 \right) \text{ if } k \geq 0 \]
\[k\tilde{A} = \left(ka_3, ka_2, ka_1 \right) \text{ if } k < 0 \]

Definition 2.8 Zero triangular fuzzy number

If \(\tilde{A} = (0,0,0) \) then \(\tilde{A} \) is said to be zero triangular fuzzy number. It is denoted by \(\tilde{0} \).

Definition 2.9 Zero equivalent triangular fuzzy number

A triangular fuzzy number \(\tilde{A} \) is said to be zero equivalent triangular fuzzy number if \(\mathfrak{R}(\tilde{A}) = 0 \). It is defined by \(\tilde{0} \).

Definition 2.10 Unit triangular fuzzy number

If \(\tilde{A} = (1,1,1) \) then \(\tilde{A} \) is said to be unit triangular fuzzy number. It is denoted by \(\tilde{1} \).

Definition 2.11 Unit equivalent triangular fuzzy number

A triangular fuzzy number \(\tilde{A} \) is said to be unit equivalent triangular fuzzy number if \(\mathfrak{R}(\tilde{A}) = 1 \). It is denoted by \(\tilde{1} \).

Definition 2.12 Inverse of triangular fuzzy number

If \(\tilde{a} \) is triangular fuzzy number and \(\tilde{a} \neq \tilde{0} \) then we define.

\[\tilde{a}^{-1} = \frac{\tilde{1}}{\tilde{a}} \]

III. TRIANGULAR FUZZY MATRICES (TFMs)

In this section, we introduced the triangular fuzzy matrix and the operations of the matrices some examples provided using the operations.

Definition 3.1 Triangular fuzzy matrix (TFM)

A triangular fuzzy matrix of order m×n is defined as \(\tilde{A} = (\tilde{a}_{ij})_{m\times n} \), where \(\tilde{a}_{ij} = (\tilde{a}_{ij1}, \tilde{a}_{ij2}, \tilde{a}_{ij3}) \) is the \(ij^{th} \) element of \(\tilde{A} \).

Definition 3.2 Operations on Triangular Fuzzy Matrices (TFMs)

As for classical matrices. We define the following operations on triangular fuzzy matrices.

Let \(A = (\tilde{a}_{ij}) \) and \(B = (\tilde{b}_{ij}) \) be two triangular fuzzy matrices (TFMs) of same order. Then, we have the following:

i. \(A + B = (\tilde{a}_{ij} + \tilde{b}_{ij}) \)
ii. \(A - B = (\tilde{a}_{ij} - \tilde{b}_{ij}) \)
iii. For \(A = (\tilde{a}_{ij})_{m\times n} \) and \(B = (\tilde{b}_{ij})_{n\times k} \) then \(AB = (c_{ij})_{m\times k} \) where \(c_{ij} = \sum_{p=1}^{n} \tilde{a}_{ip} \cdot \tilde{b}_{pj}, i=1,2,\ldots,m \) and \(j=1,2,\ldots,k \)
iv. \(A^T \) or \(A^I = (\tilde{a}_{ij}) \)
v. \(KA = (K\tilde{a}_{ij}) \) where \(K \) is scalar.

Examples

1. If \(\tilde{A} = \begin{bmatrix} (1,2,3) & (2,4,6) \\ (-1,1,3) & (2,3,4) \end{bmatrix} \) and \(\tilde{B} = \begin{bmatrix} (2,3,4) & (3,5,7) \\ (4,5,6) & (4,5,9) \end{bmatrix} \)

Then, \(A + B = \begin{bmatrix} (3,5,7) & (5,9,13) \\ (3,6,9) & (6,8,13) \end{bmatrix} \)

2. If \(\tilde{A} = \begin{bmatrix} (1,2,3) & (2,4,6) \\ (-1,1,3) & (2,3,4) \end{bmatrix} \) and \(\tilde{B} = \begin{bmatrix} (2,3,4) & (3,5,7) \\ (4,5,6) & (4,5,9) \end{bmatrix} \)

Then, \(A - B = \begin{bmatrix} (1,2,3) & (2,4,6) \\ (-1,1,3) & (2,3,4) \end{bmatrix} - \begin{bmatrix} (2,3,4) & (3,5,7) \\ (4,5,6) & (4,5,9) \end{bmatrix} \)

3. If \(\tilde{A} = \begin{bmatrix} (1,2,3) & (2,4,6) \\ (-1,1,3) & (2,3,4) \end{bmatrix} \) and \(\tilde{B} = \begin{bmatrix} (2,3,4) & (3,5,7) \\ (4,5,6) & (4,5,9) \end{bmatrix} \)
Then, $A \cdot B = (\tilde{a}_{ij} \tilde{b}_{ij})$

$$A \cdot B = \begin{bmatrix} (1,2,3) & (2,4,6) \\ (-1,1,3) & (2,3,4) \end{bmatrix} \cdot \begin{bmatrix} (2,3,4) & (3,5,7) \\ (4,5,6) & (4,5,9) \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} (1,2,3)(3) + (2,4,6)(5) & (1,2,3)(5) + (2,4,6)(6) \\ (-1,1,3)(3) + (2,3,4)(5) & (-1,1,3)(5) + (2,3,4)(6) \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} (13,26,39) & (17,34,51) \\ (7,18,29) & (7,23,39) \end{bmatrix}.$$

IV. JAM TRIANGULAR FUZZY MATRIX (JTFM)

In this section, we introduce the new matrix namely JAM matrix in the fuzzy nature.

Definition 4.1 Lower JAM Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called Lower JAM triangular fuzzy matrix if all the entry of the first principle diagonal a_{11} are zero.

i.e. $\tilde{a}_{ij} = 0; i + 2 < j \forall i, j = 1, 2, ..., n$

Definition 4.2 Upper JAM Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called an upper JAM triangular fuzzy matrix if all the entry below the principle diagonal a_{nn} are zero.

i.e. $\tilde{a}_{ij} = 0; i > j + 2 \forall i, j = 1, 2, ..., n$

Definition 4.3 JAM Triangular Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called JAM triangular fuzzy matrix (JTFM). If it is either upper JAM triangular fuzzy matrix and lower JAM triangular fuzzy matrix.

Definition 4.4 Lower JAM Equivalent Triangular Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called lower JAM equivalent triangular fuzzy matrix if all the entry above the diagonal are 0

Definition 4.5 Upper JAM Equivalent Triangular Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called Upper JAM equivalent triangular fuzzy matrix. If the entry of principal diagonal a_{nn} are 0

Definition 4.6 JAM Equivalent Triangular Fuzzy Matrix

A Square triangular fuzzy matrix $A = (\tilde{a}_{ij})$ is called JAM equivalent triangular fuzzy matrix. If it is either upper JAM equivalent triangular fuzzy matrix or lower JAM equivalent triangular fuzzy matrix.

V. SOME PROPERTIES OF JAM TRIANGULAR FUZZY MATRICES

In this section, we introduced the properties of JAM Triangular fuzzy Matrices(JTFMs).

5.1. Properties of JTFM (JAM Triangular Fuzzy Matrix)

Property 5.1.1:

The sum of two lower JTFM’s of order n is also a lower JTFM of order n.

Proof:

Let $A = (\tilde{a}_{ij})$ and $B = (\tilde{b}_{ij})$ be two lower JTFM’s

Since A and B are lower JTFM’s then, $\tilde{a}_{ij} = 0$ and $\tilde{b}_{ij} = 0$, if $i + 1 < j$, for all $i, j = 1, ..., n$.

Let A+B=C then, $(\tilde{a}_{ij} + \tilde{b}_{ij}) = (\tilde{c}_{ij})$.

Since $i + 2 < j; i, j = 1, ..., n$ then,

$\tilde{c}_{ij} = \tilde{a}_{ij} + \tilde{b}_{ij}$

$= 0$

Hence C is also a lower JTFM of order n.

Property 5.1.2:

The sum of two Upper JTFM’s of order n is also an upper JTFM of order n.
Proof:

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two upper JTFM's.

Since A and B are upper JTFM's.

Then, \(a_{ij} = 0 \) and \(b_{ij} = 0 \) \(\forall \ i > j + 1; \ i, j = 1,2,...n \)

Let \(A + B = C \) then \((a_{ij} + b_{ij}) = (c_{ij}) \)

Since \(i > j + 2; \ i,j = 1,2,...n \) then,

\[
c_{ij} = a_{ij} + b_{ij} = 0
\]

Hence C is also an upper JTFM of order n.

Property 5.1.3:

The product of two upper JTFM's is also a lower JTFM.

Proof:

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two upper JTFM's.

Since A and B are upper JTFM's.

Then, \(a_{ij} = 0 \) and \(b_{ij} = 0 \) \(\forall \ i > j + 1; \ i, j = 1,2,...n \)

Let \(A + B = C \) then \((a_{ij} + b_{ij}) = (c_{ij}) \)

Since \(i > j + 2; \ i,j = 1,2,...n \) then,

\[
c_{ij} = a_{ij} + b_{ij} = 0
\]

Hence C is also an upper JTFM of order n.

Property 5.1.4:

The product of a lower JTFM by a constant is also a lower JTFM.

Proof:

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two upper JTFM's.

Since A and B are upper JTFM's.

Then, \(a_{ij} = 0 \) and \(b_{ij} = 0 \) \(\forall \ i > j + 1; \ i, j = 1,2,...n \)

Let \(A + B = C \) then \((a_{ij} + b_{ij}) = (c_{ij}) \)

Since \(i > j + 2; \ i,j = 1,2,...n \) then,

\[
c_{ij} = a_{ij} + b_{ij} = 0
\]

Hence C is also an upper JTFM of order n.

Property 5.1.5:

The product of two lower JTFM of order n is also a lower JTFM of order n.

Proof:

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two upper JTFM's.

Since A and B are upper JTFM's.

Then, \(a_{ij} = 0 \) and \(b_{ij} = 0 \) \(\forall \ i > j + 1; \ i, j = 1,2,...n \)

Let \(A + B = C \) then \((a_{ij} + b_{ij}) = (c_{ij}) \)

Since \(i > j + 2; \ i,j = 1,2,...n \) then,

\[
c_{ij} = a_{ij} + b_{ij} = 0
\]

Hence C is also an upper JTFM of order n.

Property 5.1.6:

The product of two upper JTFM's of order n is also an upper JTFM of order n.
Proof:

Let $A = \tilde{a}_{ij}$ and $B = \tilde{b}_{ij}$ be two upper JTFMs.

Since A and B are upper JTFMs,

$\tilde{a}_{ij} = 0$ and $\tilde{b}_{ij} = 0$ for all $i > j + 2; i, j = 1, 2 \ldots n$.

For $i > j + 2$ we have $\tilde{a}_{ik} = 0$ for $k = 1, 2, \ldots i$ and similarly $\tilde{b}_{kj} = 0$ for $k = i + 2 \ldots n$.

Therefore $\tilde{c}_{ij} = \sum_{k=1}^{n} \tilde{a}_{ik} \cdot \tilde{b}_{kj}$

$= \sum_{k=1}^{i} \tilde{a}_{ik} \cdot \tilde{b}_{kj} + \sum_{k=i+2}^{n} \tilde{a}_{ik} \cdot \tilde{b}_{kj}$

$= 0$

Hence C is also upper JTFM.

Property 5.1.7:

The transpose of an upper JTFM is a lower JTFM and vice versa.

Proof:

Let $A = (\tilde{a}_{ij})$ be an upper JTFM.

Since A is an upper JTFM, $\tilde{a}_{ij} = 0$ for all $i > j + 2; i, j = 1, 2, \ldots, n$

Let B be the transpose of A then $A' = B$ i.e. $(\tilde{a}_{ji}) = (\tilde{b}_{ij})$

For all $i > j + 2; i, j = 1, 2, \ldots, n, \tilde{a}_{ij} = 0 = \tilde{b}_{ji}$.

That is for all $i + 2 < j; i, j = 1, 2, \ldots, n$

$\tilde{b}_{ij} = 0$

Hence B is a lower JTFM.

VI. CONCLUSION

In this article, JAM of triangular fuzzy matrices are defined and some relevant properties of their matrices have also been proved. Few illustrations based on operations of triangular fuzzy matrices have also been justified. In future, these matrices will be apply in the polynomials, generalized fibonacci numbers, and special kind of composition of natural numbers in the domain of fuzzy environment.

REFERENCES

[3] Edgar Asplud, Inverse of matrices (a_{ij}) which satisfy $a_{ij} = 0$ for $j > i + p$ math and T, 1959, 57-60.