SOLVING FUZZY LINEAR PROGRAMMING PROBLEM USING SUPPORT AND CORE OF FUZZY NUMBERS

Dr.S.Ramathilagam1, K.Balamurugan2
1 Asst. Professor, Department of mathematics, Periyar Arts College, Cuddalore, Tamilnadu, India
2 Asst. Professor and Head, Department of Mathematics, Achariya Arts and Science College, Puducherry
Email: balamuruganek@gmail.com

ABSTRACT
Many authors used different types ranking function to solve fuzzy linear programming method. In this paper new approach has been proposed to solve fuzzy linear programmed by using support and core of fuzzy numbers without using membership function and alpha cut technique. Different types of problems were taken and solved by proposed method.

Keywords – Fuzzy linear programming problem, Trapezoidal and Triangular fuzzy number, support and core of fuzzy number.

1. INTRODUCTION

2. DEFINITIONS
2.1. Membership function: Let R be the real line. Let A be the subset of R. The function \(\mu_A : R \rightarrow [0,1] \) is known as membership function on X.

Fuzzy set: Let X be set and x be an arbitrary element of X, then a fuzzy subset A of X is a map \(\mu_A : X \rightarrow [0,1] \) (or) is a set of ordered pair \(A = \{(x, \mu_A(x))| x \in X \} \), where \(\mu_A(x) \) is a membership function.

2.2 Fuzzy number: A fuzzy set A of R is said to be trapezoidal fuzzy number, if the membership function has the following characteristic

1. \(\mu_A : R \rightarrow [0,1] \) is continuous function.
2. \(\mu_A(x) = 0, \forall x \in (-\infty, c] \cup [d, \infty) \).
3. Strictly increasing on \([c,a]\) and strictly decreasing on \([b,d]\).
4. \(\mu_A(x) = 1, \forall x \in [a,b] \)

Note: Trapezoidal Fuzzy number becomes triangular fuzzy number when a=b.

2.3 \(\alpha \) cut: The \(\alpha \) cut of a fuzzy set A is the crisp set, \(A_\alpha \),that contains all the elements of X whose membership grade in A are greater than or equal to the value \(\alpha \).

i.e., \(A_\alpha = \{x | \mu_A(x) \geq \alpha \} \)

2.4 Convex fuzzy set: A fuzzy set A on R is convex if and only if \(\mu_A(\lambda x + (1-\lambda)y) \geq \min(\mu_A(x), \mu_A(y)) \), \(\forall x, y \in X \) and \(\lambda \in [0,1] \)

2.5 Support of Fuzzy number: If A is a fuzzy set, then support of \(A = \{x \in X | \mu_A(x) > 0 \} \) and denoted by Supp(A) or S(A).

2.6. Core of fuzzy number: If A is a fuzzy set, then core of \(A = \{x \in X | \mu_A(x) = 1\} \) and denoted by Cor(A) or C(A).
2.7. Average of an interval: If \([a,b]\) is a subset of \(\mathbb{R}\), then average of \([a, b]\) is defined as \(\text{Avg}([a,b]) = \frac{a+b}{2}\).

There are many ways of representing the fuzzy numbers. But most importantly the fuzzy numbers are represented in two ways namely triangular fuzzy number and trapezoidal fuzzy numbers.

2.8. Trapezoidal fuzzy number:

Let us consider the trapezoidal number as \(\text{A} = (a_l, a_u, \alpha, \beta) = (a_l - \alpha, a_l, a_u, a_u + \beta)\) where \(\alpha = \beta\) or \(\alpha \neq \beta\) and its corresponding membership function is defined as follows

\[
\mu_A(x) = \begin{cases}
\frac{x-\alpha}{\beta} & a_l - \alpha \leq x \leq a_l \\
1 & a_l \leq x \leq a_u \\
\frac{(x+\beta) - x}{\beta} & a_u \leq x \leq a_u + \beta \\
0 & \text{elsewhere}
\end{cases}
\]

The geometrical representation of trapezoidal membership function for fuzzy number \((a_l, a_u, \alpha, \beta)\) is shown below

![Fig-1: Trapezoidal Fuzzy Number](image)

Here, the support of \(\text{A}\) is \(S(\text{A}) = (a_l - \alpha, a_u + \beta)\) and the core of \(\text{A}\) is \(C(\text{A}) = \{a_l\}\).

\[
\text{Avg}(S(\text{A})) = \frac{(a_l - \alpha) + (a_u + \beta)}{2},
\]

\[
\text{Avg}(C(\text{A})) = \frac{a_l + a_u}{2} \quad \text{...............(1)}
\]

2.9. Triangular fuzzy number:

Let us consider the trapezoidal number as \(\text{A} = (a, \alpha, \beta) = (a - \alpha, a, a + \beta)\) where \(\alpha = \beta\) or \(\alpha \neq \beta\) and its corresponding membership function is defined as follows

\[
\mu_A(x) = \begin{cases}
\frac{x-(a-\alpha)}{a} & a - \alpha \leq x \leq a \\
1 & x = a \\
\frac{(a+\beta)-x}{\beta} & a \leq x \leq a + \beta \\
0 & \text{elsewhere}
\end{cases}
\]

The geometrical representation of trapezoidal membership function for fuzzy number \((a, \alpha, \beta)\) is shown below

![Fig-2: Triangular Fuzzy Number](image)

Here, the support of \(\text{A}\) is \(S(\text{A}) = (a - \alpha, a + \beta)\) and the core of \(\text{A}\) is \(C(\text{A}) = \{a\}\).

\[
\text{Avg}(S(\text{A})) = \frac{(a - \alpha) + (a + \beta)}{2},
\]

\[
\text{Avg}(C(\text{A})) = \frac{a}{2} \quad \text{...............(2)}
\]

2.10. Operations of Trapezoidal Fuzzy Numbers:

Assume that \(\text{A} = (a_l, a_u, \alpha, \beta)\) and \(\text{B} = (b_l, b_u, \gamma, \delta)\) are any two trapezoidal fuzzy number, then the arithmetic trapezoidal fuzzy numbers are defined as below
2.10.1. Addition: $A + B = (a_i, a_u, \alpha, \beta) + (b_i, b_u, \gamma, \delta) = (a_i + b_i, a_u + b_u, \alpha + \gamma, \beta + \delta)$

2.10.2. Subtraction: $A - B = (a_i, a_u, \alpha, \beta) - (b_i, b_u, \gamma, \delta) = (a_i - b_i, a_u - b_u, \alpha - \gamma, \beta + \gamma)$

2.10.3. Scalar Multiplication:

$xA = (xa_i, xa_u, x\alpha, x\beta)$, if $x \geq 0$ and $xA = (xa_i, -x\beta, -x\alpha)$, if $x < 0$

2.11. Operations of Triangular Fuzzy Numbers:

Assume that $A = (a, \alpha, \beta)$ and $B = (b, \gamma, \delta)$ are any two trapezoidal fuzzy numbers, then the arithmetic trapezoidal fuzzy numbers are defined as below

2.11.1. Addition: $A + B = (a, \alpha, \beta) + (b, \gamma, \delta) = (a + b, \alpha + \gamma, \beta + \delta)$

2.11.2. Subtraction: $A - B = (a, \alpha, \beta) - (b, \gamma, \delta) = (a - b, \alpha + \gamma, \beta + \gamma)$

2.11.3. Scalar Multiplication:

$xA = (xa_i, xa_u, x\alpha, x\beta)$, if $x \geq 0$ and $xA = (xa_i, -x\beta, -x\alpha)$, if $x < 0$

2.12. Ranking function: The ranking function is the most powerful technique to compare the fuzzy numbers. Many types of ranking functions introduced by the many authors to solve fuzzy linear programming problem with fuzzy parameters.

Let $F(R)$ be the set of all fuzzy numbers. The ranking function \mathcal{R} is defined by $\mathcal{R}: F(R) \rightarrow R$.

The comparison between the fuzzy numbers A and B is shown below

1. $A < B$ iff $\mathcal{R}(A) < \mathcal{R}(B)$
2. $A > B$ iff $\mathcal{R}(A) > \mathcal{R}(B)$
3. $A = B$ iff $\mathcal{R}(A) = \mathcal{R}(B)$

Also \mathcal{R} satisfies the linear property as follows

$\mathcal{R}(cA + B) = c\mathcal{R}(A) + \mathcal{R}(B)$, where $c \in R$ and $A, B \in F(R)$.

2.13. Support and core with respect to Maleki Ranking Function for Trapezoidal fuzzy numbers:

If $A = (a, \alpha, \beta) = (a_i - \alpha, a_i, a_u, a_u + \beta)$ is a trapezoidal fuzzy number, then the Maleki ranking function[4] for trapezoidal fuzzy number is

$$\mathcal{R}(A) = \int_0^1 (\inf a_\lambda + \sup a_\lambda) d\lambda = a_i + a_u + \frac{(\beta - \alpha)}{2}$$

$$= \frac{2(a_i + a_u) + (\beta - \alpha)}{2} = \frac{(a_i + a_u) + (\beta - \alpha) + (a_i + a_u)}{2} = \frac{(a_i - \alpha) + (a_u + \beta) + (a_i + a_u)}{2} = \frac{(a_i - \alpha) + (a_u + \beta) + (a_i + a_u)}{2}$$

$\mathcal{R}(A) = \text{Avg}(S(A)) + \text{Avg}(C(A))$

2.14. Support and core with respect to Maleki Ranking Function for Triangular fuzzy numbers:

If $A = (a, \alpha, \beta) = (a - \alpha, a, a + \beta)$ is a triangular fuzzy number, then the Maleki ranking function[4] for triangular fuzzy number is

$$\mathcal{R}(A) = \int_0^1 (\inf a_\lambda + \sup a_\lambda) d\lambda = 2a + \frac{(\beta - \alpha)}{2}$$

$$= \frac{4a + (\beta - \alpha)}{2} = \frac{(a - \alpha) + (a + \beta) + 2a}{2} = \frac{(a - \alpha) + (a + \beta) + 2a}{2} + a$$

$\mathcal{R}(A) = \text{Avg}(S(A)) + C(A)$

www.ijsret.org
2.15. Support and core with respect to Robust’s Ranking Function for Trapezoidal fuzzy numbers:

\[
\mathcal{R}(A) = \frac{1}{2} \left(\inf_{\alpha} a_\alpha + \sup_{\alpha} a_\alpha \right) d\lambda
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(a_i + a_u + \frac{(\beta - \alpha)}{2} \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(2(a_i + a_u) + (\beta - \alpha) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(a_i + a_u + (\beta - \alpha) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(a_i - \alpha + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(a_i - \alpha + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a_i - \alpha) + (a_u + \beta) + (a_i + a_u) \right)
\]

2.16. Support and core with respect to Robust’s Ranking Function for Triangular fuzzy numbers:

If \(A = (a, \alpha, \beta) = (a - \alpha, a, a + \beta) \) is a triangular fuzzy number, then the Robust’s ranking function for triangular fuzzy number is

\[
\mathcal{R}(A) = \frac{1}{2} \left(\inf_{\alpha} a_\alpha + \sup_{\alpha} a_\alpha \right) d\lambda = \frac{1}{2} \left(2a + \frac{(\beta - \alpha)}{2} \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left(4a + \frac{(\beta - \alpha)}{2} \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

\[
\mathcal{R}(A) = \frac{1}{2} \left((a - \alpha) + (a + \beta) + 2a \right)
\]

2.16. Mathematical formulation of Linear programming

Problem:

The mathematical linear programming problem is stated as follows

\[
\text{Max (or) Min } z = \sum_{j=1}^{n} c_j x_j \text{ subject to }
\]

\[
\sum_{j=1}^{n} a_{ij} x_j \leq \text{ or } \geq b_j , i=1,2,\ldots,m
\]

\[
x_j \geq 0
\]

The above mathematical LPP is known as crisp linear programming problem. Here all the parameters are crisp values. Some time the some or all the parameters are fuzzy numbers, then the crisp LPP became fuzzy linear programming problem.

So, the mathematical fuzzy linear programming problem as follows

\[
\text{Max (or) Min } z = \sum_{j=1}^{n} \tilde{c}_j x_j \text{ subject to }
\]

\[
\sum_{j=1}^{n} \tilde{a}_{ij} x_j \leq \text{ or } \geq \tilde{b}_j , i=1,2,\ldots,m
\]

\[
x_j \geq 0
\]

Where \(\tilde{c}_j, \tilde{a}_{ij}, \tilde{b}_j \) are fuzzy numbers.

Numerical Examples:

1. For symmetric trapezoidal fuzzy number \(\tilde{A} = (2,4,8,2,2) \) calculated as bellow

\[
\text{Support, core and ranking function value for the fuzzy number } A=(4,8,2,2) \text{calculated as bellow}
\]

\[
S(A) = (a_i - \alpha, a_u + \beta) = (4 - 2, 8 + 2) = (2,10)
\]

\[
\text{Avg}(S(A)) = \frac{(a_i - \alpha) + (a_u + \beta)}{2} = \frac{2+10}{2} = \frac{12}{2} = 6
\]

\[
C(A) = [a_i, a_u] = [4,8]
\]
Maleki Ranking function value for \((4,8,2,2) \) is \(\mathcal{R}(A) = \text{Avg}(S(A)) + \text{Avg}(C(A)) = 6 + 6 = 12 \)

Similar manner crisp values for the remaining fuzzy number found and list in the table below

<table>
<thead>
<tr>
<th>Fuzzy number(A)</th>
<th>S(A)</th>
<th>C(A)</th>
<th>Avg (S(A))</th>
<th>Avg (C(A))</th>
<th>(\mathcal{R}(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3,1,1)</td>
<td>(0.4)</td>
<td>[1,3]</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(1.5,2,2)</td>
<td>(-1.6)</td>
<td>[1,5]</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(1.7,3,3)</td>
<td>(-2.10)</td>
<td>[1,7]</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>(2,6,2,2)</td>
<td>(0.8)</td>
<td>[2,6]</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>(5,9,2,2)</td>
<td>(3.11)</td>
<td>[5,9]</td>
<td>7</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

So, the crisp LPP for the above FLPP as given below

\[
\begin{align*}
\text{Max } z &= 12x_1 + 4x_2 + 6x_3 \text{ subject to } \\
2x_1 - x_2 + 2x_3 &\leq 8 \\
x_1 + 4x_3 &\leq 8 \\
x_1 + 3x_2 + 2x_3 &\leq 14 \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

Where \(z, x_1, x_2, x_3 \) are crisp variables corresponding to fuzzy variables \(\tilde{z}, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3 \)

Solving the above LPP using simplex method we get,
\(x_1 = 2.7143, \quad x_2 = 1.4286, \quad x_3 = 0 \) and \(z = 19.1429 \)

Using Robust’s Ranking function, Support, core and ranking function value for the fuzzy number \(A=(4,8,2,2) \) calculated as below

\[
\begin{align*}
S(A) &= (a_l - \alpha, a_u + \beta) = (4 - 2.8 + 2) = (2.10) \\
\text{Avg}(S(A)) &= \frac{(a_l - \alpha) + (a_u + \beta)}{2} = \frac{2 + 10}{2} = \frac{12}{2} = 6 \\
C(A) &= [a_l, a_u] = [4, 8] \\
\text{Avg}(C(A)) &= \frac{(a_l + a_u)}{2} = \frac{4 + 8}{2} = \frac{12}{2} = 6 \\
\end{align*}
\]

Robust’s Ranking function value for \((4,8,2,2) \) is \(\mathcal{R}(A) = \frac{1}{2} \left(\text{Avg}(S(A)) + \text{Avg}(C(A)) \right) = \frac{1}{2} (6 + 6) = 6 \)

So, the crisp LPP for the above FLPP as given below

\[
\begin{align*}
\text{Max } z &= 6x_1 + 2x_2 + 3x_3 \text{ subject to } \\
2x_1 - x_2 + 2x_3 &\leq 4 \\
x_1 + 4x_3 &\leq 4 \\
x_1 + 3x_2 + 2x_3 &\leq 7 \\
x_1, x_2, x_3 &\geq 0
\end{align*}
\]

Where \(z, x_1, x_2, x_3 \) are crisp variables corresponding to fuzzy variables \(\tilde{z}, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3 \)

Solving the above LPP using simplex method we get,
\(x_1 = 5.428, \quad x_2 = 2.857, \quad x_3 = 0 \) and \(z = 76.57 \)

2. For non-symmetric trapezoidal fuzzy number

\[
\begin{align*}
\text{Max } \tilde{z} &= (4,8,3,1)\tilde{x}_1 + (1,3,1,1)\tilde{x}_2 + (1,5,3,1)\tilde{x}_3 \\
\text{subject to } \\
2\tilde{x}_1 - \tilde{x}_2 + 2\tilde{x}_3 &\leq (1,7,4,2) \\
\tilde{x}_1 + 4\tilde{x}_3 &\leq (2,6,1,3) \\
\tilde{x}_1 + 3\tilde{x}_2 + 2\tilde{x}_3 &\leq (5,9,1,3) \quad \tilde{x}_1, \tilde{x}_2, \tilde{x}_3 \geq 0
\end{align*}
\]

Using Maleki Ranking function, Support, core and ranking function value for the fuzzy number \(A=(4,8,3,1) \) calculated as below

\[
\begin{align*}
S(A) &= (a_l - \alpha, a_u + \beta) = (4 - 3.8 + 1) = (1,9) \\
\text{Avg}(S(A)) &= \frac{(a_l - \alpha) + (a_u + \beta)}{2} = \frac{1 + 9}{2} = \frac{10}{2} = 5 \\
C(A) &= [a_l, a_u] = [4, 8]
\end{align*}
\]
\[\text{Avg}(C(A)) = \frac{(a_i + a_u)}{2} = \frac{(4 + 8)}{2} = \frac{12}{2} = 6 \]

\[R(A) = \text{Avg}(S(A)) + \text{Avg}(C(A)) = 5 + 6 = 11 \]

Similar manner crisp values for the remaining fuzzy number found and list in the table below

<table>
<thead>
<tr>
<th>Fuzzy number(A)</th>
<th>S(A)</th>
<th>C(A)</th>
<th>Avg(S(A))</th>
<th>Avg(C(A))</th>
<th>R(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3,1,1)</td>
<td>(0,4)</td>
<td>[1,3]</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(1,5,3,1)</td>
<td>(-2.6)</td>
<td>[1,5]</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(1,7,4,2)</td>
<td>(-3.9)</td>
<td>[1,7]</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>(2,6,1,3)</td>
<td>(1,9)</td>
<td>[2,6]</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>(5,9,1,3)</td>
<td>(4,12)</td>
<td>[5,9]</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

So, the crisp LPP for the above FLPP as given below

\[\text{Max } z = 11x_1 + 4x_2 + 5x_3 \text{ subject to} \]

\[2x_1 - x_2 + 2x_3 \leq 7 \]
\[x_1 + 4x_3 \leq 9 \]
\[x_1 + 3x_2 + 2x_3 \leq 15 , x_1 , x_2 , x_3 \geq 0 \]

Where \(x_1 , x_2 , x_3 \) are crisp variables corresponding to fuzzy variables \(\bar{x}_1 , \bar{x}_2 , \bar{x}_3 \)

Solving the above LPP using simplex method we get,
\(x_1 = 2.5714 , x_2 = 1.6429 , x_3 = 0 \) and \(z = 17.4286 \)

Now, consider triangular Fully Fuzzy linear programming problem the problem discussed in Rajarajeshwari [8]

\[\text{Max } \bar{z} \approx (1,2,3) \oplus \bar{x}_1 + (2,3,4) \oplus \bar{x}_2 \text{ subject to} \]

\((0,1,2) \oplus \bar{x}_1 + (1,2,3) \oplus \bar{x}_2 \approx (1,10,27) \)
\((1,2,3) \oplus \bar{x}_1 + (0,1,2) \oplus \bar{x}_2 \approx (2,1,28) \)
\(\bar{x}_1 , \bar{x}_2 \geq 0 \)

Solution:-

By Maleki ranking function, we get the crisp LPP as follows

\[\text{Max } z = 4x_1 + 6x_2 \text{ subject to} \]

\[2x_1 + 4x_2 \leq 24 \]
\[4x_1 + 2x_2 \leq 26 , x_1 , x_2 \geq 0 \]

The solution is \(x_1 = 4.6667 ; x_2 = 3.6667 ; Z = 40.6667 \)

By Robust’s ranking function, we get the crisp LPP as follows

\[\text{Max } z = 2x_1 + 3x_2 \text{ subject to} \]

\[x_1 + 2x_2 \leq 12 \]
\[2x_1 + x_2 \leq 13 , x_1 , x_2 \geq 0 \]

The solution is \(x_1 = 4.6667 ; x_2 = 3.6667 ; Z = 20.3333 \)

3. Conclusion

In this paper we proposed new method of solving any kind Fuzzy linear programming problem without using alpha cut method. Here we introduced the new technique
support and core of trapezoidal and triangular fuzzy numbers with different types of problem. When compare with other proposed methods by various authors this will be the simplest method of solving any FLPP. We have taken Maleki ranking function and Robust’s Ranking function for solving FLPP.

REFERENCES